Your Perfect Assignment is Just a Click Away

Starting at $8.00 per Page

100% Original, Plagiarism Free, Customized to Your instructions!


Using LASSO regression to build parsimonious model in R:

Using LASSO regression to build parsimonious model in R:

Using LASSO regression to build parsimonious model in R:

  • The purpose of this assignment is to use Least Absolute Shrinkage and Selection Operator (LASSO) to perform regularization and variable selection on a given model.
  • Depending on the size of the penalty term, LASSO shrinks less relevant predictors to (possibly) zero. Thus, it enables us to consider a more parsimonious model.
  • Please refer to questions and reference solutions with R codes (open the attached file for it) in which you will see how to use R for diabetes dataset (see the reference websites). Then use the NewYorkHousing.csv as attached we have used in assignment 1 and slightly modify the R codes you will be able to answer the following questions:
  1. Load the lars package and the New York Housing dataset (as in the attached file for download).
  2. Next, load the glmnet package that will be used to implement LASSO.
  3. Save the MEDV as y and only use the first 12 variables (i.e., columns in New York Housing dataset) as x. While x is a set of independent variables, y is the dependent variable which is a quantitative measure of the median housing values. (Hints: can assign matrix format to the variable x).
  4. Generate separate scatterplots with the line of best fit for all the predictors in x with y on the vertical axis.
  5. Regress y on the predictors in x using OLS (Ordinary Least Square Regression). We will use this result as benchmark for comparison.
  6. Use the glmnet function to plot the path of each of x’s variable coefficients against the L1 norm of the beta vector. This graph indicates at which stage each coefficient shrinks to zero.
  7. Use the cv.glmnet function to get the cross validation curve and the value of lambda that minimizes the mean cross validation error.
  8. Using the minimum value of lambda from the previous exercise, get the estimated beta matrix.
  9. To get a more parsimonious model we can use a higher value of lambda that is within one standard error of the minimum.
  10. Use this value of lambda to get the beta coefficients. Note that more coefficients are now shrunk to zero.
  11. Please include Introudction, R codes with outputs, Figures and explanations with cover and reference pages. A good conclusion to wrap up the assignment is also expected.
  12. Please refer to Example 6.1 and 6.2 of Chapter 6 in our textbook for details regarding how LASSO works so you know how to explain your results in this assignment.


Please copy/paste screen images of your work in R, and put into a Word document for submission. Be sure to provide narrative of your answers (i.e., do not just copy/paste your answers without providing some explanation of what you did or your findings).

Due DateJul 18, 2021 11:59 PMAttachmentslasso-regression-in-r-exercises and solutions-f… (52.79

"Place your order now for a similar assignment and have exceptional work written by our team of experts, guaranteeing you A results."

Order Solution Now

Our Service Charter

1. Professional & Expert Writers: Ace Papers only hires the best. Our writers are specially selected and recruited, after which they undergo further training to perfect their skills for specialization purposes. Moreover, our writers are holders of masters and Ph.D. degrees. They have impressive academic records, besides being native English speakers.

2. Top Quality Papers: Our customers are always guaranteed of papers that exceed their expectations. All our writers have +5 years of experience. This implies that all papers are written by individuals who are experts in their fields. In addition, the quality team reviews all the papers before sending them to the customers.

3. Plagiarism-Free Papers: All papers provided by Ace Papers are written from scratch. Appropriate referencing and citation of key information are followed. Plagiarism checkers are used by the Quality assurance team and our editors just to double-check that there are no instances of plagiarism.

4. Timely Delivery: Time wasted is equivalent to a failed dedication and commitment. Ace Papers is known for the timely delivery of any pending customer orders. Customers are well informed of the progress of their papers to ensure they keep track of what the writer is providing before the final draft is sent for grading.

5. Affordable Prices: Our prices are fairly structured to fit in all groups. Any customer willing to place their assignments with us can do so at very affordable prices. In addition, our customers enjoy regular discounts and bonuses.

6. 24/7 Customer Support: At Ace Papers, we have put in place a team of experts who answer all customer inquiries promptly. The best part is the ever-availability of the team. Customers can make inquiries anytime.